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Motivation

This study falls within the design and the development of a decision
support and expert system. The main objective of this study is focused on
the automatic selection and parametrization of ML models. The major
goal is to achieve an optimal performance for a given task while providing
the rationale traceability behind a recommendation or decision. The
designed system is particularly aimed at the provision of explanations of
such rationale traceability and promising trend analysis of the area of big
industrial data. The empirical studies are hence carried out with respect to
the big data analysis for industry 4.0 actors (engineers and researchers).

business needs.

Key concepts

Automated Machine Learning (AutoML) Auto ML is often used to
help domain experts, who typically have limited ML expertise, in order to
generate and build high quality models to better meet their specific

Meta-1earning refers to the algorithms that are concerned with their
own learning process as well as learning across a series of related
prediction tasks.
Explainable AI (XAl) provide a set of tools and frameworks to better
understand and interpret the predictions of a machine-learning model.

Proposed system
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Recommender module

Suggested configurations

Recommendation 1: RandomForestClassifier Expected accuracy : 0.97917
Recommendation 2 : GradientBoostingClassifier Expected accuracy : 0.97826

Gradient Boosting Classifier Recommended model configuration

Class sklearn.ensemble.GradientBoostingClassifier

B B B Hyperparameter Value
(loss, learning_rate, n_estimators, subsample, criterion. min_samples_split, min_samples_leaf, min

_weight_fraction_leaf, max_depth, min_impurity_decrease, min_tmpurity_split, init, random_state,
max_features, verbose, max_leaf_nodes, warm_start. validation_fraction. n_iter_no_change, tol, cc
p_alpha)

n_estimators 50

min_impurity_decrease 0.0

Gradient boosting classifiers are a group of machine learning algorithms that combine many
weak learning medels together to create a strong predictive model . Gradient boosting models
are becoming popular because of their effectivenass at classifying complex datasets, and have
recently been used to win many Kaggle data science competitions.

max_features sqrt
learning_rate 1.0
loss deviance

Learn more> > random_state 324089

AMLBID package

AMLBID is a self-explainable AutoML system in the form of a Python-
package. The system proposes a transparent and justified analysis to
discover the most suitable model for optimal performance among multiple
machine learning models. It attempts to automate the process of
algorithm selection, the tunning of hyperparameters, and traceability in
supervised machine learning.

1 from AMLBID.recommender import AMLBID_Recommender

2 from AMLBID.explainer import AMLBID_Explainer
3 from AMLBID.loader import =*
l

5 #Load dataset
¢ Data,X_train,Y_train,X_test,Y_test=load_data("Dataset.csv")

8 #Generate the optimal configurations

o model ,config=AMLBID_Recommender .recommend (Data,

0 metric="Accuracy",
1 mode="Recommender_Explainer")
model .fit (X_train, Y_train)

#Generate the interactive explanatory dash

5 Explainer = AMLBID_Explainer.explain(model, config,
6 X_test, Y_test)
v Explainer.dash ()

Explainer module
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e Expand AMLBID to support classifiers of distributed machine-
learning libraries.

e Upload the AMLBID to the PyPI/Conda-forge package index to
facilitate its distribution and use.
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