Solving Vehicle Routing Problems with Profits

Rym Guibadj rym.guibadj@univ-littoral.fr

Laboratoire d'Informatique Signal et Image de la Côte d'Opale - EA 4491.

Studied problems and applications

- The "Orienteering Problems" involve two decisions: which customers should be visited ? How to order their visits ?
- Problems with conflicting objectives: maximize the collected profit and minimize the routing costs.
- Several constraints: time windows, fleet size, vehicle with limited capacity, maximal tour length, drivers breaks, hotels selection...etc.
- Real applications : tourist trip planning, cash-in-transit transport, last kilometer logistics.

Figure 1: example of solution for the Orienteering Prob-
lem with Times Windows (TOPTW)Figure 2: example of solution for the Orienteering Prob-
lem with Hotels Selection (OPHS)Figure 3: example of solution for the Pickup and Deliv-
ery Problem with Time Windows and Profits (PDPTWP)

Solution approaches

Mono-objective problems

• Using different representations of the same problem each one being associated with its proper search space and neighborhoods.

Figure 4: Variable Search Space approach

• "Order-first Route-second" with dedicated optimal splitting procedures: find the longest path on an auxiliary directed acyclic graph.

Figure 5: The auxiliary graph associated with a giant tour $\{1, 2, ..., n\}$, in an OPHS instance with 2 hotels and 3 periods

Multi-objective problems

- Handling simultaneously profit maximization and travel cost minimization in the Selective Pickup and Delivery Problem with Reserved Requests.
- Decomposition-based multi-objective approach: decomposition into single-objective optimization sub-problems, adaptive insertion criterion within Pareto Local Search framework, perturbation mechanisms to modify the search direction of sub-problems.

Results

• The results obtained on the benchmark instances show the effectiveness of our approaches in comparison of the state-of-the-art algorithms: best relative gap, reduced cpu time and strict improvements.

Perspectives

References

- [1] Youcef Amarouche, Rym Guibadj, Elhadja Chaalal, and Aziz Moukrim. Effective neighborhood search with optimal splitting and adaptive memory for the team orienteering problem with time windows. *Computers & Operations Research*, 123:105039, 2020.
- [2] Racha El-Hajj, **Rym Guibadj**, Aziz Moukrim, and

• Understand what happens when a meta heuristic navigates between giant tours and complete solutions. It is probably possible to obtain better results by defining criteria to decide when Split or Split ⁻¹ must be called.	Mehdi Serairi. A pso based algorithm with an efficient optimal split procedure for the multiperiod vehicle rout- ing problem with profit. Annals Of Operations Research, 291(1):281–316, 2020.
• Develop a method able to recommend suitable operators/algorithms for different Selective VRP in- stances.	[3] Asma Ben-Said, Aziz Moukrim, Rym Guibadj , and Jérôme Verny. Using decomposition-based multi-objective algorithm to solve selective pickup and delivery problems
• Investigate the development of exact approaches.	with time windows. Computers & Operations Research, Submitted on January 2021.