Random Projection Streams: a New Framework for Compressive Learning

Farouk YAHAYA¹, Matthieu PUIGT, Paul DUCOROY², Gilles DELMAIRE, and Gilles ROUSSEL Univ. Littoral Côte d'Opale, LISIC, F-62228 Calais, France ¹ Ph.D. student ; ² student also affiliated with EILCO

- How to design *R* and
- Random projections is a popular tool in machine learning to speed-up cor preserving pairwise structure
- Mathematical foundations based on the Johnson-Lindenstrauss Lemma Given $0 < \varepsilon < 1$, a set X of n points in \mathbb{R}^m , and a number $k > 8 \ln(n)/\varepsilon^2$, there is a linear that

$$\forall u, v \in X, \quad (1 - \varepsilon) \|u - v\|^2 \le \|f(u) - f(v)\|^2 \le (1 + \varepsilon) \|u - v\|^2$$

Principles of the random projections (source: Erichson et al., 2019)

- Existing random projections techniques (possibly) applied to NMF: 1. Gaussian Compression (GC): Gaussian random matrices as projection matrices (Zhou
- Simple but computationally demanding 2. CountSketch (Clarkson & Woodruff, 2017): L is sparse where each column has only a s chosen in a uniformly random position with value randomly equal to ± 1
- ► Faster than GC but requires less compression to provide the same performance 3. CountGauss (Kapralov et al., 2016): combination of GC and CountSketch
- Same performance as GC but faster to compute
- 4. (Verv) Sparse Random Projections ((V)SRP, Achlioptas, 2001, Li *et al.*, 2006):

$$L_{ij} = \sqrt{s} \cdot \begin{cases} 1 \text{ with prob. } 1/(2s), \\ 0 \text{ with prob. } (s-1)/s, \text{ with } s = 3 \text{ (SRP) or } s \gg 3 \text{ (VSRP)} \\ -1 \text{ with prob. } 1/(2s) \end{cases}$$

- -1 with prob. 1/(2S). Cheap to compute and assymptocally equivalent to GC
- 5. Structured random projections aka Randomized Power Iterations (RPIs, Tepper & Sapir $\boldsymbol{L} = \mathsf{QR}((\boldsymbol{X}\boldsymbol{X}^{\mathsf{T}})^{q} \cdot \boldsymbol{X} \cdot \boldsymbol{\Omega}_{L})^{\mathsf{T}}$
- Structured random projections (SRP) data-dependent compression ► Was found to be much more accurate than GC in practice
- But much more expensive than GC to compute

Problem Statement

- SotA data-independent compression can be efficiently implemented
- ► But is less accurate than SRP in practice (Tepper & Sapiro, 2016)
- ► However SRP is very expensive
- We aim to propose a data-independent alternative to SRP providing the sar

	Random projection streams
zation (NMF) is a Processing and	 Recall the JLL: there is a linear projection operator which preserves the pairwise distances up to a distorsion para Applied to NMF: k ≜ p + ν where ν is a user-defined value v v v v v e v ε but v computational cost ∨ v v v v v e but v computational cost ∨ v v v v v v v v v v v v v v v v v v v
that an observed	 We assume: L and R are drawn according to a SotA data-independent compression These matrices to be observed in a streaming fashion. At each NMF iteration compression sub-matrices L⁽ⁱ⁾ and R⁽ⁱ⁾ are
nmixing	▶ <i>W</i> and <i>H</i> updated using different compressed matrices $X_R^{(i)}$ and
oproaches	Require: initial matrices <i>W</i> , <i>H</i> , <i>i</i> = 0 repeat Update $i = i + 1$ and get $L^{(i)}$ and $R^{(i)}$ Define $X^{(i)} \triangleq X$, $P^{(i)}$ and $X^{(i)} \triangleq L^{(i)}$, <i>X</i>
	for counter = 1 to ω do Define $H_R^{(i)} \triangleq H \cdot R^{(i)}$ and $W_L^{(i)} \triangleq L^{(i)} \cdot W$ Solve min $_{W \ge 0} \ X_R^{(i)} - WH_R^{(i)}\ _{\mathcal{F}}$
9)	Solve $\min_{H \ge 0} \ X_L^{(i)} - W_L^{(i)}H\ _{\mathcal{F}}$ end for
negative least	 We derive streamed versions of SotA data-independent GC Streams (GCS), CountSketch Streams (CountSketchS), Cou Streams ((V)SRPS)
	Random Projection Streams for Compressive Weighter
1	 In many problems, observed data matrix X with missing associated to each entry Some applications: collaborative filtering, source apportionment,
	mobile sensor calibration \Rightarrow Weighted NMF (WNMF): min $ Q \circ X - Q \circ (W \cdot Q) $
	 W,H≥0 " Compressive Weighted NMF (Yahaya et al., 2019) ► EM procedure ► E-step: we complete X from the last estimates of W and H
	$X^{comp} = Q \circ X + (\mathbb{1}_{n,m} - Q) \circ$
mputations while	 where 1_{n,m} is the n × m matrix of ones. M-step: we update W and H using a compressive framework Computing R and L done at each E-step Computing RPIs/RSIs is the bottleneck of the framework
r map $f : \mathbb{R}^m \to \mathbb{R}^k$ such	Random Projection Streams for WNMF Require: initial matrices W and H
	repeat for counter = 1 to ω do Update $i = i + 1$ and get $L^{(i)}$ and $R^{(i)}$ {E-step} Compute X^{comp} as above Define $X_R^{(i)} \triangleq X^{comp} \cdot R^{(i)}$ and $X_L^{(i)} \triangleq L^{(i)} \cdot X^{comp}$ {M-step} for compt=1 to Max _{Outlter} do
<i>et al.</i> , 2012)	Define $H_R^{(i)} \equiv H \cdot H^{(i)}$ and $W_L^{(i)} \equiv L^{(i)} \cdot W$ Solve min_W_> of $\ X_{-}^{(i)} - W_{-}H_{-}^{(i)}\ _{T}$
single non-zero entry	Solve $\min_{H \ge 0} X_L^{(i)} - W_L^{(i)}H _{\mathcal{F}}$ end for end for until a stopping criterion
	Experiments
°o, 2016):	 We draw random nonnegative matrices W and H with n Two NMF solvers, <i>i.e.</i>, Nesterov gradient (NeNMF – Gua (AS-NMF, Kim and Park, 2008) We apply three different compression strategies, <i>i.e.</i>, RS poster) For NMF:
	 we repeat each test 15 times to get statistics on the performance we investigate the influence of ν and ω on the performance The performance criterion used in this paper is a Relative Recon RRE ≜ X - W ⋅ H ²_F/
me performance	 For WNMF: We randomly remove some data (from 10 to 90%) We apply the proposed techniques during 1 min and we repeat e We use the RRE computed over the theoretical full matrix X^{theo}
rmation in "F. Yahaya, M. Puigt,	G. Delmaire, and G. Roussel, Random Projection Streams for (Weig

Summary

- to data-dependent random projections (SRP)
- Our strategy can be applied to Weighted NMF as well
- ► We aim to investigate GCS to other compressive learning problems
- activities, SFR Campus de la Mer, CNES Osynico project)

Acknowledgements

acknowledge LightOn to freely provide its cloud computing platform for this work.

alue

 $X_{L}^{(i)}$, resp.

 $\| H \|_{\mathcal{F}}$

p = m = 10000 and p = 5. an et al., 2012) and Active Set

SIs, GC and RPS (mainly GCS in the

nstruction Error (RRE) $||X||_{\mathcal{F}}^2$

each test 15 times

