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Context

X ≈ W · H

≈ ·

I Nonnegative Matrix Factorization (NMF) is a
popular tool in Signal/Image Processing and
Machine Learning

I Goal: estimate two nonnegative n × p and p ×m matrices W and H such that an observed
low-rank nonnegative n ×m matrix X can be written as X ≈W · H

I Some applications:
I Source separation, dictionary learning, graph analysis, topic modelling, hyperspectral unmixing...

I Why is NMF so popular? Better interpretability than no-sign-constrained approaches

NMF and PCA applied to face dataset (source: Lee and Seung, 1999)
I How is NMF working?

I Iterative procedure where W and H are alternatingly updated
I Historical techniques known to be slow (multiplicative updates, projected gradients, nonnegative least

squares, etc)
I NMF and Big Data: How to face the data deluge?

I Distributed computing (e.g., Liu et al., 2010)
I Online factorization (e.g., Mairal et al., 2010)
I Fast solver (e.g., Guan et al., 2020)
I Randomized strategies (e.g., Wang et al., 2010, Tepper and Sapiro, 2016)

î Dimensionality reduction of X by right (resp. left) multiplication with R (resp. L)
X · R︸ ︷︷ ︸

XR

≈W · H · R︸ ︷︷ ︸
HR

≈ ·

L · X︸︷︷︸
XL

≈ L ·W︸ ︷︷ ︸
WL

·H

≈ ·

How to design R and L

I Random projections is a popular tool in machine learning to speed-up computations while
preserving pairwise structure

I Mathematical foundations based on the Johnson-Lindenstrauss Lemma
Given 0 < ε < 1, a set X of n points in Rm, and a number k > 8 ln(n)/ε2, there is a linear map f : Rm → Rk such
that :

∀u, v ∈ X , (1− ε)‖u − v‖2 ≤ ‖f (u)− f (v)‖2 ≤ (1 + ε)‖u − v‖2

Principles of the random projections (source: Erichson et al., 2019)

I Existing random projections techniques (possibly) applied to NMF:
1. Gaussian Compression (GC): Gaussian random matrices as projection matrices (Zhou et al., 2012)

I Simple but computationally demanding
2. CountSketch (Clarkson & Woodruff, 2017): L is sparse where each column has only a single non-zero entry

chosen in a uniformly random position with value randomly equal to ±1
I Faster than GC but requires less compression to provide the same performance

3. CountGauss (Kapralov et al., 2016): combination of GC and CountSketch
I Same performance as GC but faster to compute

4. (Very) Sparse Random Projections ( (V)SRP, Achlioptas, 2001, Li et al., 2006):

Lij =
√

s ·

 1 with prob. 1/(2s),
0 with prob. (s − 1)/s,
−1 with prob. 1/(2s),

with s = 3 (SRP) or s � 3 (VSRP)

I Cheap to compute and assymptocally equivalent to GC
5. Structured random projections aka Randomized Power Iterations (RPIs, Tepper & Sapiro, 2016):

L = QR((XX T )q · X · ΩL)T

I Structured random projections (SRP) data-dependent compression
I Was found to be much more accurate than GC in practice
I But much more expensive than GC to compute

Problem Statement

I SotA data-independent compression can be efficiently implemented
I But is less accurate than SRP in practice (Tepper & Sapiro, 2016)
I However SRP is very expensive
I We aim to propose a data-independent alternative to SRP providing the same performance

Random projection streams

I Recall the JLL: there is a linear projection operator which maps the data to Rk and which
preserves the pairwise distances up to a distorsion parameter ε

I Applied to NMF: k , p + ν where ν is a user-defined value
I Ø ν î Ú ε but Ø computational cost
I Ú ν î Ø ε but Ú computational cost

I We assume:
I L and R are drawn according to a SotA data-independent compression and cannot fit in memory.
I These matrices to be observed in a streaming fashion.
I At each NMF iteration compression sub-matrices L(i) and R(i) are considered.
I W and H updated using different compressed matrices XR

(i) and XL
(i), resp.

Require: initial matrices W , H, i = 0
repeat
Update i = i + 1 and get L(i) and R(i)

Define X (i)
R , X · R(i) and X (i)

L , L(i) · X
for counter = 1 to ω do
Define H(i)

R , H · R(i) and W (i)
L , L(i) ·W

Solve minW≥0 ‖X (i)
R −WH(i)

R ‖F
Solve minH≥0 ‖X (i)

L −W (i)
L H‖F

end for
until a stopping criterion

î We derive streamed versions of SotA data-independent compression techniques
I GC Streams (GCS), CountSketch Streams (CountSketchS), CountGauss Streams (CountGaussS), (V)SRP

Streams ((V)SRPS)...

Random Projection Streams for Compressive Weighted NMF

I In many problems, observed data matrix X with missing entries or confidence measures
associated to each entry
I Some applications: collaborative filtering, source apportionment, low-rank nonnegative matrix completion,

mobile sensor calibration

í Weighted NMF (WNMF):
min

W ,H≥0
‖Q ◦ X −Q ◦ (W · H)‖F

î Compressive Weighted NMF (Yahaya et al., 2019)
I EM procedure
I E-step: we complete X from the last estimates of W and H

X comp = Q ◦ X + (1n,m −Q) ◦ (W · H),

where 1n,m is the n ×m matrix of ones.
I M-step: we update W and H using a compressive framework

!!! Computing R and L done at each E-step
î Computing RPIs/RSIs is the bottleneck of the framework

î Random Projection Streams for WNMF
Require: initial matrices W and H

repeat
for counter = 1 to ω do
Update i = i + 1 and get L(i) and R(i)

{E-step}
Compute X comp as above
Define X (i)

R , X comp · R(i) and X (i)
L , L(i) · X comp

{M-step}
for compt=1 to MaxOutIter do
Define H(i)

R , H · R(i) and W (i)
L , L(i) ·W

Solve minW≥0 ‖X (i)
R −WH(i)

R ‖F
Solve minH≥0 ‖X (i)

L −W (i)
L H‖F

end for
end for

until a stopping criterion

Experiments

I We draw random nonnegative matrices W and H with n = m = 10000 and p = 5.
I Two NMF solvers, i.e., Nesterov gradient (NeNMF – Guan et al., 2012) and Active Set

(AS-NMF, Kim and Park, 2008)
I We apply three different compression strategies, i.e., RSIs, GC and RPS (mainly GCS in the

poster)
I For NMF:

I we repeat each test 15 times to get statistics on the performance
I we investigate the influence of ν and ω on the performance
I The performance criterion used in this paper is a Relative Reconstruction Error (RRE)

RRE , ||X −W · H||2F / ||X ||
2
F

I For WNMF:
I We randomly remove some data (from 10 to 90%)
I We apply the proposed techniques during 1 min and we repeat each test 15 times
I We use the RRE computed over the theoretical full matrix X theo

Results

I Influence of ω and νi
ω = 1 ω = 2 ω = 5 ω = 10 ω = +∞ (GC)
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Figure: NMF performance for different parameters of the GCS strategy.

I Influence of the choice of the compression technique
Vanilla RSI (ν = 10) GCS (νi = 150)

CountSketchS (νi = 150) CountGaussS (νi = 150) SRPS (νi = 150)
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Figure: Influence of compression techniques on NMF performance along iterations.

I Performance in the weighted case
Vanilla RSI (ν = 10) GC (ν = 50) GC (ν = 100)

GC (ν = 150) GCS (ν = 50) GCS (νi = 100) GCS (νi = 150)
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Figure: WNMF performance vs the missing value proportion.

On-going work

I Computational cost of RPS might be prohibitive with CPU.
î It linearly increases with the number of NMF iterations

I On-going work to investigate the use of a photonics computing processors to perform RPS
î Very fast and low-energy computations of GC.
I In collaboration with the LightOn company.

I Investigation of the enhancement of RPS for other machine learning approaches.

Summary

I We proposed random projection streams (RPS), i.e., a data-independent alternative strategy
to data-dependent random projections (SRP)

I Our strategy can be applied to Weighted NMF as well
I We aim to investigate GCS to other compressive learning problems
I We aim also to apply the proposed strategy to informed and structured NMF techniques for

mobile sensor calibration (TI Dunkerque) and hyperspectral imaging (LISIC Longuenesse
activities, SFR Campus de la Mer, CNES Osynico project)

Acknowledgements

This work was partially funded by the Région Hauts-de-France. The experiments were
performed using the CALCULCO computing platform supported by SCoSI/ULCO. We also
acknowledge LightOn to freely provide its cloud computing platform for this work.

More information in “F. Yahaya, M. Puigt, G. Delmaire, and G. Roussel, Random Projection Streams for (Weighted) Nonnegative Matrix Factorization, Proc. IEEE ICASSP, 2021, pp. 3280–3284”


