Fonctions de Walsh pour le benchmarking des métaheuristiques

Sara Tari, Mahmoud Omidvar, and Sébastien Verel

Université du Littoral Côte d'Opale, LISIC, France

"gradient free" optimization algorithms	Question and method	Benchmark
 Principle: enumeration of a subset of the search space Many ways to enumerate the search space Monte Carlo, bayesian optimization, Local search, and evolutionary algorithms 	 A lot of problem instances 	Pseudo-boolean functions: $f: \{0,1\}^n \to \mathbb{R}$
	• A lot of optimization algorithms (and parameters)	Use a benchmark to test algo, and learn pb. vs. algo.
	How to tune, or select an efficient algorithm according to the problem instance ?	Ex. in quantum computing, operational research, etc.

Computational hardness of spin-glass problems with tile-planted solutions

Evolutionary algorithms

Dilina Perera,^{1,*} Firas Hamze,² Jack Raymond ^(a),² Martin Weigel ^(a),³ and Helmut G. Katzgraber ^(a),^{1,5} ¹Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843-4242, USA ²D-Wave Systems, Inc., 3033 Beta Avenue, Burnaby, British Columbia, Canada V5G 4M9 ³Centre for Fluid and Complex Systems, Coventry University, Coventry, CV1 5FB, England ⁴Microsoft Quantum, Microsoft, Redmond, Washington 98052, USA ⁵Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, USA

(Received 24 July 2019; revised manuscript received 16 January 2020; accepted 5 February 2020; published 28 February 2020)

Walsh functions

Local search

Decomposition of pseudo-bool. func. $\forall x \in \{0,1\}^n, \ f(x) = \sum_{k=0}^{2^n - 1} w_k \cdot \varphi_k(x)$ $\forall k \in [0, 2^n - 1],$ $w_k = \frac{1}{2^n} \sum_{x \in \{0,1\}^n} f(x) \cdot \varphi_k(x)$

$f(x) = w_4(-1)^{x_2} + w_3(-1)^{x_0+x_1} + w_6(-1)^{x_1+x_2} + w_{10}(-1)^{x_1+x_3} + w_{12}(-1)^{x_2+x_3}$ **Applications**

- Design deceptive functions
- Grey-box optimization : use linear decomposition for smart computation (see F. Chicano, D. Withley, etc.)
- Optimization based on digital twins (surrogate model)

First experiments

First results with Tile-Planting benchmark

Toward benchmark with importance

The function is defined by:

$$f(x) = \sum_{i=1}^m \alpha_i C_{k_i}(x_{i_1}, \dots, x_{i_{a_i}})$$

where $\forall j \in 1, k, C_j : \{0, 1\}^{a_j} \to \mathbb{R}$ are pseudo-boolean functions of arity a_j . $\forall i \{1, \dots, m\}, \alpha_i \in \mathbb{R}, \text{ and } k_i \text{ is the index of the clause.}$

Importance

The variables $X = \{x_1, ..., x_n\}$ are split into *k* classes of importance: $c_i \subset X$ such that $\bigcup_k c_k = X$, and $c_i \cap c_j = \emptyset$.

Each class c_i of importance has a degree of importance d_i . The probability that a variable of class c_i to appear in a clause is $p_i = \frac{d_i}{\sum_i d_i}$.

A parameter (factor) defined the probability that the same class of importance appear in the same clause:

 $Pr(cl(x_{i_1}) = c_1, cl(x_{i_2}) = c_2, \dots, cl(x_{i_a}) = c_a)$

When the variable importances are independent:

 $Pr(cl(x_{i_1}) = c_1, cl(x_{i_2}) = c_2, \dots cl(x_{i_a}) = c_a) = p_{c_1}p_{c_2}\dots p_{c_a}$ $lpha_i = 1$, or $lpha_i = (\Pi_i d_i)^{1/a_i}$

		the producting of encoding subproduction from enable of the earlies
are for three system sizes, $L = 16$, $L = 24$, and $L = 32$. $\langle \log_{10} \rho \rangle$	$_{\rm s}\rangle$	are for three system sizes, $L = 16$, $L = 24$, and $L = 32$. $\langle \log_{10} \rho_s \rangle$
and median TTS values are estimated using 200 problems per in	n-	and median TTS values are estimated using 200 problems per in-
stance class, per system size. All panels have the same horizont	al	stance class, per system size. All panels have the same horizontal
scale.		scale.

Discussion

- Design domain "independent" benchmark based on Walsh functions
- Compare benchmark, and algorithme with quantum computing
- Representation of real-world problems in Walsh basis of function

Perspectives

- Build a large set of instances, and test a large class of algorithms
- Apply such techniques on expensive multiobjective optimization problems: Combinatorial problems ou mixed optimization problems based numerical simulation