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”gradient free” optimization algorithms

Principle: enumeration of a subset of the search space

• Many ways to enumerate the search space

– Monte Carlo, bayesian optimization, . . .
– Local search, and evolutionary algorithms

Local search / Evolutionary algorithms

Question and method

• A lot of problem instances

• A lot of optimization algorithms (and parameters)

How to tune, or select an efficient algorithm
according to the problem instance ?

Problem
Extract

Features Algo.
Learn

- algebric
- geometric (Fitness landscape)

Benchmark

Pseudo-boolean functions: f : {0,1}n→ IR

Use a benchmark to test algo, and learn pb. vs. algo.

Ex. in quantum computing, operational research, etc.
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We investigate the computational hardness of spin-glass instances on a square lattice, generated via a recently
introduced tunable and scalable approach for planting solutions. The method relies on partitioning the problem
graph into edge-disjoint subgraphs and planting frustrated, elementary subproblems that share a common
local ground state, which guarantees that the ground state of the entire problem is known a priori. Using
population annealing Monte Carlo, we compare the typical hardness of problem classes over a large region of
the multidimensional tuning parameter space. Our results show that the problems have a wide range of tunable
hardness. Moreover, we observe multiple transitions in the hardness phase space, which we further corroborate
using simulated annealing and simulated quantum annealing. By investigating thermodynamic properties of these
planted systems, we demonstrate that the harder samples undergo magnetic ordering transitions which are also
ultimately responsible for the observed hardness transitions on changing the sample composition.
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I. INTRODUCTION

Optimization problems with many minima occur in a
multitude of fields, including finance, engineering, materials
sciences, and machine learning. While a range of problems
such as shortest path, maximum flow, and minimum spanning
tree can be elegantly solved with algorithms of a run time
growing polynomially with the system size [1], many of the
most interesting problems are known to be NP hard, and, as
a consequence, polynomial-time algorithms are very unlikely
to exist. Among discrete optimization problems many systems
can be mapped onto the Ising spin glass [2,3] as a central
object of study in statistical physics. Its features of frustration
and random disorder that are believed to be fundamental to the
existence of a spin-glass phase [4] lead to a multitude of local
minima separated by barriers—the complex (free) energy
landscape—that are also at the heart of hard optimization
problems more generally [3,5]. Besides the overlap in model
systems, statistical physics methods have also proven particu-
larly valuable in elucidating the structure of the solution space
of optimization problems [6] and the occurrence of phase
transitions in sample hardness as suitable control parame-
ters are tuned [7]. Moreover, many heuristic techniques for
optimization such as simulated annealing (SA) [8], parallel
tempering Monte Carlo [9–13], population annealing Monte
Carlo (PAMC) [14–17], and simulated quantum annealing
(SQA) using quantum Monte Carlo [18–21] have been derived
from concepts in statistical and quantum physics.
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Recent years have witnessed the advent of special-purpose
devices for discrete optimization. Most noteworthy are the
commercially available analog D-Wave quantum annealing
devices [22,23], which strive to minimize Ising Hamiltonians
by exploiting quantum tunneling and superposition. The latest
machine, the D-Wave 2000Q, allows for the optimization of
instances with up to 2000 Ising variables, although sparse con-
nectivity of the native graph and the noise due to control errors
[24–26] pose limitations for practical applications. As of now,
no experimental evidence of a quantum advantage for generic
optimization applications has been discovered, while there are
some early indications of a quantum advantage when using the
machine as a physical simulator. However, a number of recent
studies have shown a speedup for the device over selected
classical algorithms for specific classes of synthetic problems
[27,28]. In addition to D-Wave devices, a number of further
experimental hardware-based solvers have been introduced,
for example, the Coherent Ising machine (optical) [29,30],
and the complementary metal-oxide semiconductor (CMOS)
based Fujitsu Digital Annealer [31,32] studied recently by
Aramon et al. [33].

With the ensuing recent growth in interest in hardware-
and software-based Ising solvers, there is an increasing de-
mand for hard tunable benchmark problems for performance
comparisons [34]. Synthetic benchmark problems the ground
states of which are known a priori by construction, commonly
known as samples with planted solutions [35], are particularly
advantageous in this regard. Ideally, the hardness of such
problems should be readily tunable, and the construction
procedure should be scalable to larger system sizes with rea-
sonable computational effort. A number of solution planting
schemes have been proposed for the case of short-range Ising
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Walsh functions

Definition [Bethke:1980]
For any k ∈ [0,2n−1], Walsh function

ϕk : {0,1}n→{−1,1}

x ∈ {0,1}n, ϕk(x) = (−1)∑
n−1
j=0 k jx j

(ϕ0, . . . ,ϕ2n−1) is an orthogonal basis:

x
0 = 000
1 = 001
2 = 010
3 = 011
4 = 100
5 = 101
6 = 110
7 = 111



ϕ0 ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1



Decomposition of pseudo-bool. func.

∀x ∈ {0,1}n, f (x) =
2n−1

∑
k=0

wk.ϕk(x)

∀k ∈ [0,2n−1],

wk =
1
2n ∑

x∈{0,1}n

f (x).ϕk(x)

f (x) = w4(−1)x2+

w3(−1)x0+x1 +w6(−1)x1+x2 +w10(−1)x1+x3 +w12(−1)x2+x3

Applications

• Design deceptive functions

• Grey-box optimization : use linear decomposition for smart

computation (see F. Chicano, D. Withley, etc.)

• Optimization based on digital twins (surrogate model)

First experiments

∑
k

Ck(x) = ∑
i, j

Ji jσiσ j

with σi ∈ {−1,1}Contexte

• Problèmes à solutions intégrées en physique
• Informations sur la nature des systèmes désordonnés
• Frustration, comportement thermodynamique 
• Systèmes de grande taille, difficulté réglable

• Chook : Tile Planting (TP) [P20]
• Treillis carré : graphe G=(V,E)
• Interactions 2-locales
• Minimisation

• Construction des instances dans Chook
• Décomposition de G en l sous-graphes
• Chaque sous-graphe correspond à un sous-problème
• Probabilités p1, p2, p3 

• Forme simple mais nombreuses possibilités futures
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ℎ𝑖 −1 𝑠𝑖 +
𝑖<𝑗

𝐽𝑖𝑗 −1 𝑠𝑖+𝑠𝑗

Exemple de graphe à 16 sommets pour le TP

Sous-problèmes possibles

Tile Planting

Protocole expérimental

• Comparer différentes instances de TP
• 36 ensembles (P1,P2,P3) différents, N=1024
• 10 instances par ensemble

• Recherches locales
• Recherche locale itérée (ILS) 
• Deterministic Recombination and Iterated Local Search (DRILS)
• Voisinage 1-flip

• Configurations (9 pour chaque)
• 𝑝 ∈ 0.01, 0.05, 0.10
• Premier améliorant (F), meilleur améliorant (B), moins bon améliorant (W) [B14]
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Comportement des règles pivot pour
une solution courante

W
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Illustration de DRILS [C17]

Expérimentations préliminaires

First results with Tile-Planting benchmark
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be observed: mixtures of C1 and C3 plaquettes, and mixtures
of C1 and C4 plaquettes. Rather than comparing log10 ⇢s dis-
tributions, here we consider the disorder averages hlog10 ⇢si
computed over 200 problems drawn from each instance class
per system size. Figure 12(a) shows hlog10 ⇢si for C1–C3

plaquette mixtures plotted as a function of p1, which is the
probability of choosing subproblems from class C1. Thus,
p1 = 1 corresponds to the instance class with all subproblems
drawn from C1 plaquette type (C1 base class), whereas p1 = 0
represents instances with all C3 subproblems (C3 base class).
Results are shown for three system sizes, L = 16, L = 24,
and L = 32. Figures 12(b) and 12(c) show the optimized me-
dian TTS for SA and SQA, again estimated using 200 prob-
lem instances. Figure 13 shows the same quantities for C1–C4

plaquette mixtures. Results from all three algorithms clearly
indicate peaks in problem hardness at p1 ⇡ 0.35 for C1–C3

mixtures, and p1 ⇡ 0.45 for C1–C4 mixtures, i.e., an easy-
hard-easy transition. This easy-hard-easy transition is akin to
the phase transition one observes in Boolean satisfiability (k-
SAT) problems at a certain clauses-to-variables ratio, below
which the formula is satisfiable and above which it is unsatis-
fiable [65]. However, we point out that our problems are ex-
actly solvable in polynomial time, and therefore the observed
hardness transition is more analogous to the transition in 2-
SAT problems than the k > 0 case for which one observes
a discontinuous transition. A similar hardness peak has been
observed for the frustrated loop problems on the Chimera lat-
tice as the loop density is varied [36].

It is interesting to explore whether these hardness peaks co-
incide with, or, are driven by thermodynamic phase transi-
tions. Based on the thermodynamic behavior of the instance
classes at p1 = 0 (C3 and C4) and p1 = 1 (C1), it is reason-
able to speculate that at zero temperature, as p1 is varied from
0 to 1, the system may undergo a transition from a disordered
phase to a ferromagnetic phase. To further explore this hy-
pothesis, we focus on the C1–C3 plaquette mixtures and mea-
sure [h|m|i]av and gm at the lowest temperature Tmin = 0.2
for different values of p1 2 [0, 1]. The results are shown in
Fig. 14 as a function of p1, where Fig. 14(a) shows [h|m|i]av
and Fig. 14(b) shows the quantity Qm = � ln(1 � gm). Sys-
tem sizes beyond L = 32 were not simulated due to difficul-
ties in thermalizing instance classes in the vicinity of the hard-
ness transition. Here, the quantity Qm = � ln(1 � gm) was
chosen over gm as it has a smaller curvature near the transi-
tion [66], allowing for a more accurate estimation of the cross-
ing point. Figure 14(a) shows that [h|m|i]av ! 1 as p1 ! 1,
consistent with the ferromagnetic properties of the C1 base
class. As Fig. 14(b) shows, Qm for different system sizes in-
tersect at a nonzero p1 value, further confirming the presence
of a ferromagnetic transition. Assuming a scaling behavior
of the form Qm ⇠ F [L1/(p1 � pc

1)], we perform a finite-
size scaling analysis to determine the point of intersection pc

1.
From finite-size scaling we expect  = ⌫, and universality im-
plies ⌫ = 1 as we are dealing with an Ising transition in two
dimensions. This leads to an acceptable fit and the estimate
pc
1 = 0.352(7).
A visual inspection of the hardness curves in Fig. 12 shows

that the peak in hardness occurs in the vicinity of this transi-
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FIG. 12: (a) Population annealing hlog10 ⇢si, (b) simulated anneal-
ing optimal median TTS, and (c) simulated quantum annealing op-
timal median TTS for instance classes comprised of mixtures of C1

and C3 subproblem types. The results are plotted against p1, which is
the probability of choosing subproblems from class C1. The curves
are for three system sizes, L = 16, L = 24, and L = 32. hlog10 ⇢si
and median TTS values are estimated using 200 problems per in-
stance class, per system size. All panels have the same horizontal
scale.

tion point. To obtain a rough estimate of the asymptotic value
of the hardness peak position as L ! 1, for each L, we fit
cubic polynomials to the data points of hlog10 ⇢si close to the
peak, and estimate the peak positions (ph

1 )L. Fig. 15 shows
(ph

1 )L plotted against 1/L. By fitting a function of the form
(ph

1 )L = A+�/L, we determine the asymptotic peak position
to be ph

1 = A = 0.370(6), where we have estimated the error
bar using bootstrap resampling. The close proximity of the
transition point pc

1 to the asymptotic hardness peak position
ph
1 suggests that the hardness transition is, indeed, driven by

the ferromagnetic transition.
We now turn to the thermodynamic properties of C1–

C4 mixtures. Fig. 16(a) and Fig. 16(b), respectively, show
[h|m|i]av and Qm as functions of p1 for C1–C4 mixtures. Both
[h|m|i]av and Qm behave in qualitatively similar ways to the
corresponding quantities for C1–C3 mixtures. From a finite-
size scaling analysis, we estimate the intersection point in Qm

to be pc
1 = 0.464(6). An inspection of the hardness curves in

Fig. 13 indicates that the peak in hardness occurs in the prox-
imity of this transition point. By investigating the scaling be-
havior of the peak position as a function of 1/L, we obtain a
rough estimate of its asymptotic value, ph

1 = 0.50(1). The
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FIG. 13: (a) Population annealing hlog10 ⇢si, (b) simulated anneal-
ing optimal median TTS, and (c) simulated quantum annealing op-
timal median TTS for instance classes comprised of mixtures of C1

and C4 subproblem types. The results are plotted against p1, which is
the probability of choosing subproblems from class C1. The curves
are for three system sizes, L = 16, L = 24, and L = 32. hlog10 ⇢si
and median TTS values are estimated using 200 problems per in-
stance class, per system size. All panels have the same horizontal
scale.

consistent closeness between the intersection points in Qm

and the hardness peak positions corroborates that in both C1–
C3 and C1–C4 mixtures, the hardness transitions are driven
by magnetic ordering transitions.

It is noteworthy to mention that apart from the thermody-
namic properties, we have also analyzed some heuristic rules
based on local measures of frustration [67], but these quanti-
ties proved not to be predictive of the hardness transitions or
the relative levels of hardness of the base classes [68].

Among problems constructed using a single subproblem
type, C2 base class instances are the hardest according to the
hlog10 ⇢si metric, cf. Fig. 4 and Table II below. Therefore it
is interesting to investigate how problem hardness is affected
when mixing C2 plaquettes with other plaquette types. Fig. 17
shows hlog10 ⇢si [panel (a)], median SA TTS [panel(b)], and
median SQA TTS [panel (c)] for the three types of binary sub-
problem mixtures involving C2: C1–C2, C2–C3, and C2–C4.
The results are for the largest system L = 32. The results
are plotted against p2, which is the fraction of C2 plaque-
ttes. All three hardness metrics indicate that problem hard-
ness monotonically increases with p2 for all three types of bi-
nary mixtures. Interestingly, one can observe variations in the
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FIG. 14: (a) Average magnetization [h|m|i]av and (b) Qm =
� ln(1 � gm) for C1–C3 instance classes, measured at the lowest
temperature simulated, Tmin = 0.2. The horizontal axis represents
p1.

TABLE II: A comparison of hlog10 ⇢si, SA median TTS, and SQA
median TTS for a selected set of instance classes. The results are for
the system size L = 32.

Instance class hlog10 ⇢si SA TTS (µs) SQA TTS (µs)

C1 2.520(3) 4.040(8) ⇥ 103 3.11(3) ⇥ 106

C2 4.70(2) 1.9(2) ⇥ 107 4.9(6) ⇥ 108

C3 1.6447(2) 1.45(2) ⇥ 103 2.86(6) ⇥ 107

C4 1.44822(7) 2.51(3) ⇥ 100 2.00(3) ⇥ 105

(0.3, 0, 0.7) 3.62(2) 3.8(3) ⇥ 106 6.1(8) ⇥ 108

(0.35, 0, 0.65) 3.75(3) 3.7(2) ⇥ 106 4.6(5) ⇥ 108

(0.4, 0, 0.6) 3.61(3) 2.18(6) ⇥ 106 2.8(2) ⇥ 108

(0.4, 0, 0) 2.39(2) 2.6(3) ⇥ 105 4.4(5) ⇥ 108

(0.45, 0, 0) 2.67(2) 6.1(7) ⇥ 105 4.2(3) ⇥ 108

(0.5, 0, 0) 2.72(2) 5.3(4) ⇥ 105 2.8(3) ⇥ 108

relative hardness levels of the three types of binary mixtures
across different p2 values as well as different algorithms. For
example, SQA finds C2–C3 plaquette mixtures to be harder
than both C1–C2 and C2–C4 mixtures for the entire range of
p2 2 [0, 1), whereas according to SA TTS and hlog10 ⇢si, the
hardness of C1–C2 mixtures surpasses that of C2–C3 mix-
tures as p2 approaches zero.

In Table II, we present a quantitative comparison of

Toward benchmark with importance

The function is defined by:

f (x) =
m

∑
i=1

αiCki(xi1, . . . ,xiai
)

where ∀ j ∈ 1,k, C j : {0,1}a j → R are pseudo-boolean functions of arity a j.
∀i{1, . . . ,m}, αi ∈ R, and ki is the index of the clause.

Importance
The variables X = {x1, . . . ,xn} are split into k classes of importance: ci ⊂ X
such that ∪kck = X , and ci∩ c j = /0.

Each class ci of importance has a degree of importance di.
The probability that a variable of class ci to appear in a clause is pi =

di
∑ j d j

.

A parameter (factor) defined the probability that the same class of importance appear
in the same clause:

Pr(cl(xi1) = c1,cl(xi2) = c2, . . .cl(xia) = ca)

When the variable importances are independent:

Pr(cl(xi1) = c1,cl(xi2) = c2, . . .cl(xia) = ca) = pc1 pc2 . . . pca

αi = 1, or αi = (Πidi)
1/ai

Discussion

• Design domain ”independent” benchmark based on Walsh functions

• Compare benchmark, and algorithme with quantum computing

• Representation of real-world problems in Walsh basis of function

Perspectives

• Build a large set of instances, and test a large class of algorithms

• Apply such techniques on expensive multiobjective optimization problems:
Combinatorial problems ou mixed optimization problems based
numerical simulation


